If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-5x-20=0
a = 7; b = -5; c = -20;
Δ = b2-4ac
Δ = -52-4·7·(-20)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{65}}{2*7}=\frac{5-3\sqrt{65}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{65}}{2*7}=\frac{5+3\sqrt{65}}{14} $
| 3x(X+6)=36 | | 20=7x+620=7x+6 | | 19=3+4z | | X^2=24+10x | | 1.6-n=7.65 | | 8-+8p=2(5-2p)+10 | | 3a+7=6a-7 | | (6-3x)/7+(x-4)/14=3/14 | | 3n-1=-2n+8 | | (9x+9)=36 | | 9x=16x-1 | | 3x-8=2x+30 | | 5x+3x=2x+30 | | 65=5v-10 | | 2^(x+3)-3*2^(x-1)=104 | | x-6.11=4.99 | | 8p-8=2(5-2p) | | 8p-8=2 | | x²=51.6 | | 4(7+y)-5y=25 | | 2(x-3)=3(x-5) | | 3(t-1)-2(2t+3)=(t+3) | | (3x+150)+3x=2018 | | (x+4)/57=(2x-7)/51 | | 3x+150+3x=2018 | | (3x+150)+3x=150 | | 5(12-x)-20=30 | | -2.8=w÷3 | | (3x-5)/32=(5x-5)/56 | | 4a+25=9-4 | | 17j=16 | | 3x-8-7x+1=0 |